

bq2084EVM-001 SBS 1.1 Battery Management Solution Evaluation Module

User's Guide

November 2005

High Performance Analog

SLUU184A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

EVM TERMS AND CONDITIONS

Texas Instruments (TI) provides the enclosed Evaluation Module and related material (EVM) to you, the user, (you or user) **SUBJECT TO** the terms and conditions set forth below. By accepting and using the EVM, you are indicating that you have read, understand and agree to be bound by these terms and conditions. IF YOU DO NOT AGREE TO BE BOUND BY THESE TERMS AND CONDITIONS, YOU MUST RETURN THE EVM AND NOT USE IT.

This EVM is provided to you by TI and is intended for your **INTERNAL ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY**. It is provided "AS IS" and "WITH ALL FAULTS." It is not considered by TI to be fit for commercial use. As such, the EVM may be incomplete in terms of required design–, marketing–, and/or manufacturing–related protective considerations, including product safety measures typically found in the end product. As a prototype, the EVM does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this EVM not meet the specifications indicated in the EVM User's Guide, it may be returned within 30 days from the date of delivery for a full refund of any amount paid by user for the EVM, which user agrees shall be user's sole and exclusive remedy. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER, AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON–INFRINGEMENT.

TI shall have no obligation to defend any claim arising from the EVM, including but not limited to claims that the EVM infringes third party intellectual property. Further, TI shall have no liability to user for any costs, losses or damages resulting from any such claims. User shall indemnify and hold TI harmless against any damages, liabilities or costs resulting from any claim, suit or proceeding arising from user's handling or use of the EVM, including but not limited to, (i) claims that the EVM infringes a third party's intellectual property, and (ii) claims arising from the user's use or handling of the EVM. TI shall have no responsibility to defend any such claim, suit or proceeding.

User assumes all responsibility and liability for proper and safe handling and use of the EVM and the evaluation of the EVM. TI shall have no liability for any costs, losses or damages resulting from the use or handling of the EVM. User acknowledges that the EVM may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the EVM it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE USER'S INDEMNITY OBLIGATIONS SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHETHER TI IS NOTIFIED OF THE POSSIBILITY OR NOT.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user **is not exclusive**.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

User agrees to read the EVM User's Guide and, specifically, the EVM warnings and Restrictions notice in the EVM User's Guide prior to handling the EVM and the product. This notice contains important safety information about temperatures and voltages.

It is user's responsibility to ensure that persons handling the EVM and the product have electronics training and observe good laboratory practice standards.

By providing user with this EVM, product and services, TI is NOT granting user any license in any patent or other intellectual property right.

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of xxx V and the output voltage range of xxx V and xxx V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than xxx°C. The EVM is designed to operate properly with certain components above xxx°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Contents

1	htroduction .1 Features .2 Kit Contents .3 Ordering Information	1-1 1-2 1-2 1-2
2	q2084/bq29312-Based Circuit Module.1Circuit Module Connections.2Pin Descriptions	2-1 2-2 2-2
3	q2084/bq29312 Circuit Module Schematic.1Preview Schematic.2Modifications for Choosing Particular Precharge Mode.3Testing Fuse-Blowing Circuit	3-1 3-2 3-3 3-3
4	Sircuit Module Physical Layouts and Bill of Materials.1Board Layout.2Bill of Materials.3bq2084/bq29312/bq29401 Circuit Module Performance Specification Summary	4-1 4-2 4-4 4-5
5	VM Hardware and Software Setup .1 System Requirements .2 Software Installation .3 Hardware Connection .5.3.1 Connecting the bq2084/bq29312/bq29401 Circuit Module to a Battery Pack . .5.3.2 PC Interface Connection	5-1 5-2 5-2 5-2 5-3 5-4
6	Operation .1 Starting the Program .2 Setting Programmable bq2084 and bq29312 Options .3 Calibration of a bq2084/bq29312/bq29401-Based Module Using the EV2300-84 Software .4 Direct Access Communication	6-1 6-2 6-4 6-5 6-6

Figures

3–1	bq2084/bq29312/bq29401 EVM Schematic	3-2
4–1	bq2084EVM-001 Layout	4-2
4–2	Top Assembly	4-2
4–3	Layer 1	4-2
4–4	Layer 2 (Internal 1)	4-3
4–5	Layer 3 (Internal 2)	4-3
4–6	Layer 4	4-3
4–7	Bottom Assembly	4-4
5–1	bq2084/bq29312 Circuit Module Connection to Cells and System Load/Charger	5-3
6–1	SBS Data Screen	6-2
6–2	SBS Data Screen – Status Bit Window	6-3
6–3	Data Flash Screen, AFE Configuration, and Module Calibration Locations	6-4
6–4	Calibration Screen	6-5
6–5	Pro Screen	6-6

Tables

1–1	Ordering Information	1-2
3–1	Components and Flash-Memory Settings for Different Precharge Modes	3-3
4–1	Bill of Materials	4-4
4–2	Performance Specifiction Summary	4-5
5–1	Circuit Module to EV2300 Connections	5-3
6–1	Example Log File	6-3

Introduction

This EVM is a complete evaluation system for the bq2084/bq29312/bq29401 battery management system. The EVM includes one bq2084/bq29312/bq29401 circuit module, a current sense resistor, a thermistor, an EV2300 PC interface board for gas gauge interface, a PC USB cable, and Windows™-based PC software. The circuit module includes one bq2084 IC, one bq29312 IC, one bq29401 IC, and all other onboard components necessary to monitor and predict capacity, perform cell balancing, monitor critical parameters, protect the cells from overcharge, over discharge, short circuit, and overcurrent in 2-, 3- or 4-series cell Li-Ion or Li-Polymer battery packs. The circuit module connects directly across the cells in a battery. With the EV2300 interface board and software, the user can read the bq2084 data registers, program the chipset for different pack configurations, log cycling data for further evaluation and evaluate the overall functionality of the bq2084/bq29312/bq29401 solution under different charge and discharge conditions.

Topic

Page

1.1	Features	1-2
1.2	Kit Contents	1-2
1.3	Ordering Information	1-2

1.1 Features

- Complete evaluation system for the bq2084 SBS 1.1-compliant advanced gas gauge, bq29312 analog front end and protection IC, and bq29401 independent overvoltage protection IC
- Populated circuit module for quick setup
- D PC software and interface board for easy evaluation
- Software that allows data logging for system analysis

1.2 Kit Contents

- bq2084/bq29312/bq29401 circuit module
- EV2300 PC interface board
- Software CD with the evaluation software
- Connection cable to interface board
- Set of support documentation
- □ EV2300 USB interface board

1.3 Ordering Information

Table 1–1. Ordering Information

EVM Part Number	Chemistry	Configuration	Capacity	
bq2084EVM-001	Li-Ion	2, 3, or 4 cell	Any	

bq2084/bq29312-Based Circuit Module

The bq2084/bq29312/bq29401-based circuit module is a complete and compact example solution of a bq2084 and bq29312 circuit for battery management and protection of Li-Ion or Li-Polymer packs. The circuit module incorporates a bq2084 battery monitor IC, bq29312 AFE and protection IC, bq29401 independent overvoltage protection IC, and all other components necessary to accurately predict the capacity of 2-, 3-, or 4-series cells.

Topi		age
2.1	Circuit Module Connections	2-2
2.2	Pin Descriptions	2-2

2.1 Circuit Module Connections

Contacts on the circuit module provide the following connections:

- Direct connection to the cells: 1N (BAT–), 1P, 2P, 3P, 4P (BAT+)
- To the serial communications port (SMBC, SMBD).
- The system load and charger connect across PACK+ and PACK-.
- □ To the *system present* pin (SYS PRES)
- ☐ To the *sleep* pin (SLEEP)

2.2 Pin Descriptions

1N	-ve connection of first (bottom) cell
1P	+ve connection of first (bottom) cell
2P	+ve connection of second cell
3P	+ve connection of third cell
4P	+ve connection of fourth (top) cell
SMBC	Serial communication port clock
SMBD	Serial communication data port
SYS PRES	System present pin (if low, system is present)
SLEEP	Sleep mode pin (if high, AFE enters sleep mode)
PACK-	Pack negative terminal
VSS	Pack negative terminal
PACK+	Pack positive terminal

bq2084/bq29312 Circuit Module Schematic

This chapter contains a preview schematic (thumbnail) of the circuit for the bq2084/bq29312/bq29401 implementation.

Topio	C Page
3.1	Preview Schematic 3-2
3.2	Modifications for Choosing Particular Precharge Mode
3.3	Testing Fuse-Blowing Circuit

3.1 Preview Schematic

Figure 3–1. bq2084/bq29312/bq29401 EVM Schematic

Refer to the back of the user's guide for the full-size schematic.

3.2 Modifications for Choosing Particular Precharge Mode

In order to charge, the charge FET (CHG-FET) must be turned on to create a current path. When the V(BAT) is 0 V and CHG-FET = ON, the V(PACK) is as low as the battery voltage. In this case, the supply voltage for the device is too low to operate. There are 3 possible configurations for this function, and the bq29312 can be easily configured according to the application needs. The 3 modes are 0-V Charge FET Mode, Common FET Mode, and Precharge FET Mode.

- 0-V Charge FET Mode Dedicates a precharge current path using an additional FET (ZVCHG–FET) to sustain the PACK+ voltage level. The host charger is expected to provide a precharge function.
- Common FET Mode Does not use a dedicated precharge FET. The charge FET (CHG–FET) is set to ON state as default. The charger is expected to provide a precharge function.
- Precharge FET Mode Dedicates a precharge current path using an additional open drain (OD) pin drive FET (PCHG–FET) FET to sustain the PACK+ voltage level. The charger does not provide any precharge function.

To use a particular mode of charging with the EVM, add or remove some elements shown in Table 3–1, and use the given settings of Flash memory, Misc Configuration DF 0x2a (high) and 0x2b (low), bits PFET1, PFET0.

Tahla	3_1	Com	nononte	and I	Elach.	Momory	Sattings	for	Difforont	Prochara	Modes
lable	3-1.	COM	ponents	anu i	-iasii-	IVIEITIOLY	Settings	101	Dinerent	riecharge	, would

Mode	Resistors	FET	PFET1	PFET0
1(default)	R19,R24	Q3, SI4435DY	0	0
2	R17	-	0	1
3	R19,R24	Q3, open drain FET	1	0

For more details about precharge operation and mode choices, see the bq29312 data sheet at <u>http://www–s.ti.com/sc/ds/bq29312.pdf</u>.

3.3 Testing Fuse-Blowing Circuit

To prevent the loss of board functionality during the fuse-blowing test, the actual chemical fuse is not provided in the circuit. FET Q4 drives TP4 low if a *fuse blow* condition occurs, so monitoring TP4 can be used to test this condition. Fuse placement on the application board is shown in the bq2084 data sheet reference-board schematic.

Circuit Module Physical Layouts and Bill of Materials

This chapter contains the board layout, bill of materials, and assembly drawings for the bq2084/ bq29312/ bq29401 circuit module.

Торі	ic	Page
4.1	Board Layout	4-2
4.2	Bill of Materials	4-4
4.3	bq2084/bq29312/bq29401 Circuit Module Performance Specification Summary	4-5

4.1 Board Layout

Figure 4–1 shows the dimensions, PCB layers, and assembly drawing for the bq2084/bq29312 module.

LAYER 2 [INTERNAL 1]

LAYER 3 [INTERNAL 2]

Figure 4–6. Layer 4

Figure 4–7. Bottom Assembly

SLUP194 REV. A BOTTOM ASSY

4.2 Bill of Materials

Table 4–1 is a list of materials required for the bq2084/bq29312 circuit module.

Table 4-1. Bill of Materials

Count	Ref Des	Description	Size	Value	MFG Part No.
18	C1, C2, C3, C4, C5, C6, C7, C8, C9, C11, C12, C13, C14, C16, C17, C18, C19, C21	Capacitor, ceramic, 50 V, X7R, 20%	603	0.1 μF	
1	C10	Capacitor, ceramic, 50 V, X7R, 20%	1206	1.0 μF	
1	C15	Capacitor, ceramic, 50 V, X7R, 10%	603	0.047 μF	
1	C20	Capacitor, ceramic, 16 V, X7R, 10%	1206	4.7 μF	
3	C22, C24, C28	Capacitor, ceramic, 16 V, X7R, 10%	603	0.47 μF	
2	C23, C25	Capacitor, ceramic, 16 V, COG, 10%	603	68 pF	
1	C26	Capacitor, ceramic, 16 V, COG, 10%	603	2200 pF	
1	C27	Capacitor, ceramic, 16 V, COG, 10%	603	150 pF	
2	D1, D6	Diode, dual, Zener, 5.6 V, 300 mW	SOT23		AZ23C5V6
1	D2	Diode, dual ultra fast, series, 200 mA, 70 V	SOT23		BAV99
5	D3, D5, D7, D8, D9	Diode, LED, gree, Gullwing, GW type, 20 mA, 7.5 mcd Typ	Gullwing		LN1361C
1	D4	Diode, dual Schottky, 200 mA, 30 V	SOT23		BAT54C
1	J1	Header, friction lock assembly, 4-pin right angle	0.400 imes 0.500		22-05-3041
3	Q1, Q2, Q3	MOSFET, P-ch, 30 V, 7.0 A, 20 mΩ	SO8		Si4435DY
2	Q4, Q6	MOSFET, N-ch, 60 V, 115 mA, 1.2 Ω	SOT23		2N7002
1	Q5	MOSFET, P-ch, 50 V, 130 mA, 10 Ω	SOT23		BSS84
16	R1, R2, R3, R8, R9, R10, R13, R14, R15, R25, R26, R30, R37, R38, R44, R45	Resistor, chip, 1/16 W, 5%	603	100 Ω	
6	R11, R12, R22, R24, R28, R29	Resistor, chip, 1/16 W, 1%	603	4.99 kΩ	
8	R16, R17, R19, R31, R33, R34, R39, R42	Resistor, chip, 1/16 W, 5%	603	100 kΩ	
1	R18	Resistor, chip, 1 W, 5%	2512	300 Ω	

Count	Ref Des	Description	Size	Value	MFG Part No.
1	R20	Resistor, chip, 1 W, 1%	2512	0.02 Ω	
3	R21, R23, R27	Resistor, chip, 1/16 W, 5%	603	1 MΩ	
1	R32	Resistor, chip, 1/16 W, 5%	603	10 Ω	
1	R35**	Resistor, chip, 1/16 W, 0.2%, 75 PPM	603	100 kΩ	
5	R36, R40, R43, R46, R48	Resistor, chip, 1/16 W, 5%	603	470 Ω	
4	R4, R5, R6, R7	Resistor, chip, 1/16 W, 5%	603	1 kΩ	
2	R41, R47	Resistor, chip, 1/16 W, 1%	603	61.9 kΩ	
1	R49	Resistor, chip, 1.16 W, 1%	603	8.45 kΩ	
1	RT1	Thermistor	0.095×0.150	10 kΩ	
1	SW1	Switch, push button, momentary, N.O. low profile	$5 \text{ mm} \times 5 \text{ mm}$		
2	TB1, TB2	Terminal block, 3 pin, 6 A, 3,5 mm	0.41 × 0.25		ED1515
2	TB3, TB4	Terminal block, 2 pin, 6 A, 3,5 mm	0.27 imes 0.25		ED1514
3	TP1, TP4, TP5	Jack, test point, cir		NA	
1	U1	IC, voltage protection for 2, 3, or 4 cell Li-lon, 2nd protection, x.xx	TSSOP-08		bq29400PW
1	U2	IC, 2, 3, or 4 cell serie protection control AFE	TSSOP24		bq29312PW
1	U3	IC, advanced gas gauge	TSSOP38		bq2084DBT
1	_	PCB			

Notes: 1) This assembly is ESD sensitive.

2) This assembly shall comply with IPC-A-610 class 2 or better.

3) This assembly must be clean of flux residues and contaminants. Use of no-clean flux is not acceptable.

4) Reference designators marked with an asterisk (**) cannot be substituted.

4.3 bq2084/bq29312/bq29401 Circuit Module Performance Specification Summary

This section summarizes the performance specifications of the bq2084/ bq29312/bq29401 circuit module.

Table 4–2. Performance Specifiction Summary

Specification	Min	Тур	Max	Units
Input Voltage Pack+ to Pack-	6.0		25	V
Charge and Discharge Current			See Note	А

Note: Maximum currents are determined by the value of the sense resistor used and the short circuit threshold setting of the bq29312. It is important to operate this EVM within the input voltage range of 6 V and 25 V, with a maximum voltage drop across the sense resistor of \pm 250 mV (1-W power dissipation).

EVM Hardware and Software Setup

This chapter describes how to install the bq2084EVM-001 PC software, and how to connect the different components of the EVM.

Topi	c Page	\$
5.1	System Requirements 5-2	
5.2	Software Installation 5-2	
5.3	Hardware Connection 5-2	

5.1 System Requirements

EV2300-84 software requires Windows[™] 2000 or Windows[™] XP. Drivers for Windows 98SE are provided, but Microsoft no longer supports Windows[™] 98; and there may be issues in Windows[™] 98 with USB driver support. The EV2300 USB drivers have been tested for Windows[™] 98SE, but no assurance is made for problem-free operation with specific system configurations.

5.2 Software Installation

You can find the latest software version in the bq2084 tool folder on power.ti.com. The following steps install the EV2300-84 software:

If files were delivered on floppy disks:

- 1) Insert disk 1 into a 3-1/2-inch floppy drive.
- Select the 3-1/2-inch drive using My Computer or File Manager. Execute setup.exe which prompts you to enter a temporary directory to extract all files. Follow the instructions of the extractor program, which prompts you to insert more disks.
- In the temporary directory you selected, open the archive TI USB DRVRS.zip and extract its contents in a subdirectory/drivers. Choose preserve directory structure option when extracting.
- 4) Plug the EV2300 into a USB port.
- Wait until system prompt new hardware found appears. Chose select location manually and use the Browse button to point to subdirectory TIUSB-Win2K-XP-1.
- 6) Answer continue to the warning that drivers are not certified with Microsoft.
- After installation finishes, another system prompt new hardware found appears. Repeat procedure above, but point to subdirectory TIUSBWin2K-XP-2
- 8) Answer *continue* to the warning that drivers are not certified with Microsoft. Installation of drivers is now finished.
- 9) In case of Windows 98, point to directory TIUSBWin98.
- 10) Return to the temporary directory where you extracted files; double-click on the Setup.exe icon to install EV Software.

If files were delivered on a CD, copy all files to a temporary directory and follow the preceding steps 3–10.

If files were downloaded from the Web:

- 1) Open the archive containing the installation package and copy its contents in a temporary directory.
- 2) Follow the preceding steps 3–10.

5.3 Hardware Connection

The bq2084EVM-001 comprises three hardware components: the bq2084/bq29312/bq29401 circuit module, the EV2300 PC interface board, and the PC.

5.3.1 Connecting the bq2084/bq29312/bq29401 Circuit Module to a Battery Pack

Figure 5–1 shows how to connect the bq2084/bq29312/bq29401 circuit module to the cells and system load/charger.

The cells should be connected in the following order.

- 1) 4-Cell Pack: 1N (BAT–), 1P, 2P, 3P, and then 4P (BAT+) (see section 2.1 for definitions)
- 2) 3-Cell Pack: 1N (BAT–), 1P, 2P, connect 4P and 3P together, then connect 4P (BAT+) to the cells.
- 3) 2–Cell Pack: 1N (BAT–), 1P, connect 4P, 3P, and 2P together, then connect 4P (BAT+) to the cells.

To start charge or discharge test, connect SYS PRES pin to PACK– pin to set SYS PRES state. To test sleep mode, disconnect SYS PRES pin.

5.3.2 PC Interface Connection

The following steps configure the hardware for interface to the PC:

1) Connect the bq2084/bq29312-based smart battery to the EV2300 using wire leads as shown in Table 5–1.

Table 5–1. Circuit Module to EV2300 Connections

bq2084/bq29312–Based Battery	EV2300
SMBD	SMBD/HDQ1
SMBC	SMBC/HDQ2
VSS	VSS

2) Connect the PC USB cable to the EV2300 and the PC USB port.

The bq2084EVM-001 is now set up for operation.

Operation

This chapter details the operation of the bq2084 EVSW software.

Торіс

Page

6.1	Starting the Program
6.2	Setting Programmable bq2084 and bq29312 Options 6-4
6.3	Calibraton of a bq2084/bq29312/bq29401-Based Module Using the EV2300-84 Software
6.4	Direct Access Communication

6.1 Starting the Program

Run bq2084 EVSW from the Start | Programs | Texas Instruments | bq2084 EVSW menu sequence. The SBS Data screen appears. Data begins to appear as the indicator scans down the screen, as seen in the field *Charging Current* of Figure 6–1. To disable the scan feature, select |Options |Scan| Off|.

Figure 6–1. SBS Data Screen

Texas Instru	ments F	EAL	W	0 R	LD	S I	gnal Pf	R D C	ES	SIN	G™	
	Dynamic Data											
SBS	Name	Value	Unit	Log	Scan		Name		Value	Unit	Log	Scan
	Manufacturer Access	0000	hex	<u> </u>			Charging Voltage		16800	mV	<u>v</u>	~
	Remaining Cap. Alarm	360	mAh	☑			Battery Status		00C0	hex	▼	V
	Remaining Time Alarm	10	min	☑			Cycle Count		0			V
ta Flash	Battery Mode	0181	hex	☑	$\overline{\mathbf{v}}$		Pack Status		80	hex	☑	\checkmark
	At Rate	0	mΑ	•			Pack Config		E3	hex	☑	☑
	At Rate Time To Full	65535	min	√			Cell Voltage 1		4066	mV	☑	\checkmark
	At Rate Time To Empty	65535	min	☑	$\overline{\mathbf{v}}$		Cell Voltage 2		4071	mV	☑	✓
Pro	At Rate OK	1		☑	$\mathbf{\nabla}$		Cell Voltage 3		4065	mV	☑	\checkmark
	Temperature	23.85	°C	☑	$\overline{\mathbf{v}}$		Cell Voltage 4		4063	mV	☑	\checkmark
	Voltage	16265	mV	☑	$\overline{\mathbf{v}}$		CEDV		13600	mV	☑	☑
	Current	0	mΑ	☑	$\mathbf{\nabla}$,					
ibration	Average Current	0	mΑ	☑	$\overline{\mathbf{v}}$		Static Data					
	Max Error	100	%	☑			Name		Vali	le	ι	nit
d Laural	Relative State of Charge	27	%	☑			Design Capacity		720	10	n	Ah
	Absolute State of Charge	27	%	◄			Design Voltage		144	00	r	nV
0.76 %	Remaining Capacity	1927	mAh	☑			Specification Info		31			
	Full Charge Capacity	7200	mAh	◄			Manufacture Date		2003-0	17-01		
	Run Time to Empty	65535	min	☑			Serial Number		1			
	Average Time to Empty	65535	min	\checkmark	$\mathbf{\nabla}$		Manufacturer Name		Texas	Inst.		
	Average Time to Full	65535	min	☑	$\mathbf{\nabla}$		Device Name		bq20	184		
	Charging Current	100	mΑ	☑	$\overline{\mathbf{v}}$		Device Chemistry		LIO	N		
	Clear Logs Log A						Clear Scans So	can All			Sta	atus
	Auto Cuela O	"	Pook	ia Una	balad		AFE Status: 00		10/6	/2003		4-50

This screen shows the SBS data set along with additional ManufacturersAccess() command information such as individual cell measurements. Static data is shown in a box at the bottom right which, by clicking on the Status... button, changes to show the status bits of the bq2084 and bq29312.

Figure 6–2. SBS Data Screen – Status Bit Window

<u>St</u>	atus B	its									
	Batte	ry Sta	itus								
	OCA	TCA	-	OTA	TD,	д	-		RC/4	RT	A
	INIT	DSG	FC	FD	EC	3	EC	2	EC1	EC	0
	Pack Status										
	PRES	ED\	/2 SE	AL V	DQ	F	PF	C٧	/0V	CVU	$\overline{\mathbf{v}}$
											_
	AFE :	Status	3								
	ZV	CLMP	SLEEF	DET	WDF	Γ)L	sc	CHG	SCDS	SG
С	lear Sc	ans	Sca	n All					S	tatic	Data
_											

SBS Data can be logged for further evaluation by using the File | Start Data Log menu options. Then enter the desired file name and click on |OK|. An example of a data log file is shown in Table 6–1. To stop the data log, follow the same sequence. The logging period can be changed via | Options | Set Logging Options |.

Table 6–1. Example Log File

	10/6/200	3 17:01												
0	Design Ca	apacity:	7200											
	Design \	/oltage:	14400											
S	pecificati	on Info:	31											
Mfg Dat	e (yyy–m	m–dd):	2003-07-	01										
	Serial N	umber:	1											
	Mfr	Name:	Texas Inst	ruments										
	Device	Name:	bq2084											
De	evice Che	emistry:	LION											
Sample	Stamp	Elapsed (s)	Mf Access	Rm Cap Aln	RmTme Alr	Batt- Mode	@Rate	@Rate- Ful	@Rate Emp	@Rate OK	Temp	Voltage	Current	Avg- Curr
1	5:01:53	1	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
2	5:01:55	2	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
4	5:01:56	4	0	360	10	181	0	65535	65535	1	23.85	16267	0	0
5	5:01:57	5	0	360	10	181	0	65535	65535	1	23.85	16267	0	0
6	5:01:58	6	0	360	10	181	0	65535	65535	1	23.95	16267	0	0
7	5:01:59	7	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
8	5:02:00	8	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
9	5:02:01	9	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
10	5:02:02	10	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
11	5:02:03	11	0	360	10	181	0	65535	65535	1	23.95	16266	0	0
12	5:02:04	12	0	360	10	181	0	65535	65535	1	23.85	16266	0	0

NOTE: This is a reduced version of the log file; in addition to the data shown here, Max Error, RSOC, ASOC, RemCap, FCC, RT–Empty, AvTm2Emp, AvTm2Ful, ChgCurr, ChgVlt, Batstat, CyclCnt, PackStat, PackConf, Cell_V_1, Cell_V_2, Cell_V_3, Cell_V_4, CEDV, AFE Sts are also logged.

6.2 Setting Programmable bq2084 and bq29312 Options

The bq2084 data flash comes configured per the default settings detailed in the bq2084 data sheet. Ensure that the settings are correctly changed to match the pack and application for the bq2084/bq29312 solution being evaluated.

IMPORTANT: The correct setting of these options is essential to get the best performance.

The settings can be configured using the Data Flash screen.

Figure 6–3. Data Flash Screen, AFE Configuration, and Module Calibration Locations

	Name	Value	Unit	Name	Value	Unit	Name	Value	Unit		
	Version	00.00		Maximum Over Cha	10304	mAh	AFE OC Dsg Delay	OF	hex		
	Remaining Time Alarm	10	min	Charge Efficiency	17.58	%	AFE SC Cha T/V	AC	hex		
	Remaining Cap Alarm	360	mAh	Maximum Temp	6538.0	°C	AFE SC Dsg T/V	02	hex		
	Design Voltage	14400	mΥ	Temp Hysteresis	0.2	°C	AFE Vref	0	0.1mV	X I	
	Specification Info	0031	hex	Overload Current	430	mA	Sense Resistor	17.0139	Ohm	$ \rangle$	
_	MfrDate(vvvv-mm-dd)	2003-07-01		Overvoltage Margin	5000	mΥ	CC Delta	0.0000000	mAh	$ \rangle$	
ish	Serial Number	1		Overcurrent Margin	700	mA	CC Offset	15312		$ \rangle$	
	Cycle Count	0		Current Fault Cir	500	mA	DSC Offset	-110		$ \rangle$	1
	Manufacturer Name	Texas Inst.		Cell OV Set	256	mΥ	ADC Offset	9			
	Device Name	ba2084		Cell OV Reset	16385	mΥ	Temperature Offset	-0.2	°C		AFE
	Device Chemistry	LION		Cell LIV Set	4400	mV	Board Offset	27	Ň		Configure
	Pack Configuration	E3	hex	Cell LIV Reset	5	mΥ	AFE Fail Limit	256	counts	\mathbf{V}	Connigura
	Gauge Configuration	41	hex	Terminate Voltage	2300	mΥ	Cell Bal Thresh	26635	mV .	n	Data
_	Misc Configuration	0800	hex	Safety Voltage	0	mΥ	Cell Bal Window	-18432	mV /	$ \rangle$	
	Deadband	9860	nV	Over Temp Cha	2000.0	°C	Cell Bal Minimum	2	m		
	Self Discharge Rate	0.2	%/dv	Over Temp Cha Reset	60.0	°C	Cell Bal Interval	255	/sec	$ \rangle$	1
	Electronics Load	0	uА	Over Temp Dsg	55.0	°C	Cell Imbalance Thresh	65295 /	mγ	`	
	Battery Low %	7.01	%	Over Temp Dsg Reset	70.0	°C	AFE Check Time	16	sec		Calibration
n	Near Full	200	mAh	Low Temp Fault	0.2	°C	Sleep Current Thresh	27.0	mA		Data
_	Design Capacity	7200	mAh	Shutdown Voltage	60930	mΥ	Sleep Time	0/	sec		Dala
	Full Charge Capacity	7200	mAh	VOC 75	60928	mΥ	Shutdown Timer	165	mΥ		
	Cycle Count Thresh	5700	mAh	VOC 50	24637	mΥ	OT offset VH	23162	mΥ		1
	Charging Voltage	16800	mΥ	VOC 25	16443	mΥ	OT offset VL	17184	mΥ		
	Pre-charge Voltage	2500	mΥ	Emf (EDV0)	320	mΥ	OT offset Terne	3404.7	°C	1	
	Fast Charging Current	2500	mA	EDV C0 (EDV1)	3041	(mV)	POR Counter	00	hex		
	Maint Charging Curr	0	mA	EDV R0 (EDV2)	2920	(mV)	PF Status	04	hex		
	Pre-charge Current	100	mA	EDV TO	6411		PF Flag	00	hex		
	Pre-charge Temp	9.6	°C	EDV R1	47116		PF Config	00	hex		
	Fast Charge Term	0.78	%	EDV TC	178		PPIN Time	0	sec		
	Fully Charged Clear	244	%	EDV C1	13		FET Fail Chg Curr	-18416	mA	1	
	Current Taper Thresh	-161	mA	Learning Low Temp	2.0	°C .	FET Fail Dsg Curr	26625	mA		
	Current Taper Vita	240	mΥ	AFE Function Control	AC	hex	FET Fail Time	224	sec		
	Tener Termination Min	15.5	mΔ	AFE OC Dsg Vitg	00	hex				4	

To read all the data from the bq2084 data flash, click on the | Read All | button. To only read a selected location, click on the desired location and the | Read Selected Location | button is activated. When this button is clicked, the data is read and the screen updated.

The same procedure can be followed for writing all the data flash or just a specific location.

The data flash configuration can be saved to a file by selecting | File | Save gas gauge constants |, and entering a file name. A data flash file can also be retrieved in this way and written to the bq2084 using the | Write All | button.

If the calibration data already in the bq2084 is required to be preserved, use the | Write All – Preserve Calibration | button.

The configuration information of the bq29312 and module calibration data is also held in the bq2084 data flash as highlighted in Figure 6–4.

6.3 Calibration of a bq2084/bq29312/bq29401-Based Module Using the EV2300-84 Software

Part of the calibration data is a board offset parameter. The EV2300-84 software allows the board offset to be measured. An average of several modules should be taken, and then this value entered in all like modules.

The calibration screen offers a simple-to-use interface for this procedure.

Follow the on-screen instructions as shown in Figure 6–4. Click |Start| to begin the test, and additional instructions appear for that particular calibration procedure until it is complete.

EV2300-84					
🐺 TEXAS INSTRUM	MENTS	REAL	WORLD	SIGNAL	P R O C E S S I N G [™]
SB5	⊂Offset Calibratio	ດ aurrent is flowi	ing		Start
Pro Calibration	⊂Voltage and Ten Insure that batte voltage is stable no current is flov	nperature (ry e and ving	Calibration Measured voltage 16267 mV Measured temperature 2995	Enter actual voltage mV Enter actual temperature	Calibrate Temperature Only
	- Current Calibrati Apply a 2 Ampe discharge load	on	Measured current 0 mA	Enter actual current (as negative) mA	Start
Communication Status OK	AutoCyc	le Off	Pack is Unsealed		Seal 10/6/2003 5:23 PM //

Figure 6–4. Calibration Screen

6.4 Direct Access Communication

The bq2084 allows access to the various internal registers through the Pro Screen. Here, individual byte or block reads and block writes can be performed.

Figure 6–5. Pro Screen

EV2300-84					_ 🗆 🗙
	D E	AL WORLD S		S S I N C	
SB5 Data Flash	Read SMBus Word-	Read	hex (decimal	
Pro Calibration	Read SMBus Block— hex address byte	Read	response		
	Vrite SMBus Word hex address byte	hex data word	Write		
Communication Status OK	AutoCycle Off	Pack is Unsealed		10/6/2003	5:24 PM 🏼 🎢